cpp八股文(2)

34、C++有哪几种的构造函数

C++中的构造函数可以分为4类:

默认构造函数

初始化构造函数(有参数)

拷贝构造函数

移动构造函数(move和右值引用)

委托构造函数

转换构造函数(简单来说,就是跳过了拷贝)

举个例子:

#include <iostream>
using namespace std;  
class Student{  
public:  
    Student(){//默认构造函数,没有参数  
    this->age = 20;  
    this->num = 1000;  
    };  
    Student(int a, int n):age(a), num(n){}; //初始化构造函数,有参数和参数列表  
    Student(const Student& s){//拷贝构造函数,这里与编译器生成的一致  
    this->age = s.age;  
    this->num = s.num;  
    };  
    Student(int r){ //转换构造函数,形参是其他类型变量,且只有一个形参  
    this->age = r;  
    this->num = 1002;  
    };  
    ~Student(){}  
public:  
    int age;  
    int num;  
};  
int main(){ 
    Student s1; 
    Student s2(18,1001); 
    int a = 10; 
    Student s3(a); 
    Student s4(s3); 
    printf("s1 age:%d, num:%dn", s1.age, s1.num); 
    printf("s2 age:%d, num:%dn", s2.age, s2.num); 
    printf("s3 age:%d, num:%dn", s3.age, s3.num); 
    printf("s2 age:%d, num:%dn", s4.age, s4.num); 
    return 0;
}
//运行结果
//s1 age:20, num:1000
//s2 age:18, num:1001
//s3 age:10, num:1002
//s2 age:10,num:1002

默认构造函数和初始化构造函数在定义类的对象,完成对象的初始化工作

复制构造函数用于复制本类的对象

转换构造函数用于将其他类型的变量,隐式转换为本类对象

35、浅拷贝和深拷贝的区别

浅拷贝

浅拷贝只是拷贝一个指针,并没有新开辟一个地址,拷贝的指针和原来的指针指向同一块地址,如果原来的指针所指向的资源释放了,那么再释放浅拷贝的指针的资源就会出现错误。

深拷贝

深拷贝不仅拷贝值,还开辟出一块新的空间用来存放新的值,即使原先的对象被析构掉,释放内存了也不会影响到深拷贝得到的值。在自己实现拷贝赋值的时候,如果有指针变量的话是需要自己实现深拷贝的。

#include <iostream>  
#include <string.h>;  
using namespace std;  
class Student{  
private:  
    int num;  
    char *name;  
public:  
    Student(){  
        name = new char(20);  
        cout << "Student" << endl;  
    };  
    ~Student(){  
        delete name;  
        name = NULL;  
    };  
    Student(const Student &s){//拷贝构造函数  
        //浅拷贝,当对象的name和传入对象的name指向相同的地址  
        name = s.name;  
        //深拷贝  
        //name = new char(20);  
        //memcpy(name, s.name, strlen(s.name));  
        cout << "copy Student" << endl;  
    };  
};  
int main(){  
{
    // 花括号让s1和s2变成局部对象,方便测试 
    Student s1;  
    Student s2(s1);
    // 复制对象 } 
    system("pause");  
    return 0;
}
//浅拷贝执行结果:
//Student//copy Student
//~Student 0x7fffed0c3ec0
//~Student 0x7fffed0c3ed0
// Error in `/tmp/815453382/a.out':  double free or corruption (fasttop): 0x0000000001c82c20
//深拷贝执行结果:
//Student
//copy Student
//~Student 0x7fffebca9fb0
//~Student 0x7fffebca9fc0

从执行结果可以看出,浅拷贝在对象的拷贝创建时存在风险,即被拷贝的对象析构释放资源之后,拷贝对象析构时会再次释放一个已经释放的资源,深拷贝的结果是两个对象之间没有任何关系,各自成员地址不同。

36、内联函数和宏定义的区别

​ 在使用时,宏只做简单字符串替换(编译前)。而内联函数可以进行参数类型检查(编译时),且具有返回值。

​ 内联函数在编译时直接将函数代码嵌入到目标代码中,省去函数调用的开销来提高执行效率,并且进行参数类型检查,具有返回值,可以实现重载。

​ 宏定义时要注意书写(参数要括起来)否则容易出现歧义,内联函数不会产生歧义

​ 内联函数有类型检测、语法判断等功能,而宏没有

内联函数适用场景:

​ 使用宏定义的地方都可以使用 inline 函数。

作为类成员接口函数来读写类的私有成员或者保护成员,会提高效率。

37、public,protected和private访问和继承权限/public/protected/private的区别?

public的变量和函数在类的内部外部都可以访问。

protected的变量和函数只能在类的内部和其派生类中访问。

private修饰的元素只能在类内访问。

(一)访问权限

派生类可以继承基类中除了构造/析构、赋值运算符重载函数之外的成员,但是这些成员的访问属性在派生过程中也是可以调整的,三种派生方式的访问权限如下表所示:注意外部访问并不是真正的外部访问,而是在通过派生类的对象对基类成员的访问。

派生类对基类成员的访问形象有如下两种:

内部访问:由派生类中新增的成员函数对从基类继承来的成员的访问

外部访问:在派生类外部,通过派生类的对象对从基类继承来的成员的访问

(二)继承权限

public继承

公有继承的特点是基类的公有成员和保护成员作为派生类的成员时,都保持原有的状态,而基类的私有成员任然是私有的,不能被这个派生类的子类所访问

protected继承

保护继承的特点是基类的所有公有成员和保护成员都成为派生类的保护成员,并且只能被它的派生类成员函数或友元函数访问,基类的私有成员仍然是私有的,访问规则如下表

private继承

私有继承的特点是基类的所有公有成员和保护成员都成为派生类的私有成员,并不被它的派生类的子类所访问,基类的成员只能由自己派生类访问,无法再往下继承,访问规则如下表

38、如何用代码判断大小端存储

大端存储:字数据的高字节存储在低地址中

小端存储:字数据的低字节存储在高地址中

例如:32bit的数字0x12345678

所以在Socket编程中,往往需要将操作系统所用的小端存储的IP地址转换为大端存储,这样才能进行网络传输

小端模式中的存储方式为:

大端模式中的存储方式为:

了解了大小端存储的方式,如何在代码中进行判断呢?下面介绍两种判断方式:

方式一:使用强制类型转换-这种法子不错

方式二:巧用union联合体

#include <iostream>;  
using namespace std;//union联合体的重叠式存储,endian联合体占用内存的空间为每个成员字节长度的最大值
union endian{ 
    int a; 
    char ch;
};  

39、volatile、mutable和explicit关键字的用法

(1)volatile

volatile 关键字是一种类型修饰符,语义是易变,用它声明的类型变量表示该变量可能被其他线程或者硬件修改,不能使用编译器优化。

volatile 指针

volatile 指针和 const 修饰词类似,const 有常量指针和指针常量的说法,volatile 也有相应的概念

修饰由指针指向的对象、数据是 const 或 volatile 的:

const char* cpch;  
volatile char* vpch;

指针自身的值——一个代表地址的整数变量,是 const 或 volatile 的:

Plaintext

char* const pchc;
char* volatile pchv;

注意:

可以把一个非volatile int赋给volatile int,但是不能把非volatile对象赋给一个volatile对象。

除了基本类型外,对用户定义类型也可以用volatile类型进行修饰。

C++中一个有volatile标识符的类只能访问它接口的子集,一个由类的实现者控制的子集。用户只能用const_cast来获得对类型接口的完全访问。此外,volatile向const一样会从类传递到它的成员。

多线程下的volatile

有些变量是用volatile关键字声明的。当两个线程都要用到某一个变量且该变量的值会被改变时,应该用volatile声明,该关键字的作用是防止优化编译器把变量从内存装入CPU寄存器中。如果变量被装入寄存器,那么两个线程有可能一个使用内存中的变量,一个使用寄存器中的变量,这会造成程序的错误执行。volatile的意思是让编译器每次操作该变量时一定要从内存中真正取出,而不是使用已经存在寄存器中的值。

(2)mutable

mutable的中文意思是“可变的,易变的”,跟constant(既C++中的const)是反义词。在C++中,mutable也是为了突破const的限制而设置的。被mutable修饰的变量,将永远处于可变的状态,即使在一个const函数中。我们知道,如果类的成员函数不会改变对象的状态,那么这个成员函数一般会声明成const的。但是,有些时候,我们需要在const函数里面修改一些跟类状态无关的数据成员,那么这个函数就应该被mutable来修饰,并且放在函数后后面关键字位置

样例

C++

class person{  
    int m_A;  
    mutable int m_B;//特殊变量 在常函数里值也可以被修改  
public:  
    void add() const//在函数里不可修改this指针指向的值 常量指针  
    { 
        m_A=10;//错误 不可修改值,this已经被修饰为常量指针  
        m_B=20;//正确 }  
    }
int main(){
    const person p;//修饰常对象 不可修改类成员的值
    p.m_A=10;//错误,被修饰了指针常量
    p.m_B=200;//正确,特殊变量,修饰了mutable
}

(3)explicit

explicit关键字用来修饰类的构造函数,被修饰的构造函数的类,不能发生相应的隐式类型转换,只能以显示的方式进行类型转换,注意以下几点:

explicit 关键字只能用于类内部的构造函数声明上

explicit 关键字作用于单个参数的构造函数

被explicit修饰的构造函数的类,不能发生相应的隐式类型转换

40、什么情况下会调用拷贝构造函数

用类的一个实例化对象去初始化另一个对象的时候 ClassName obj1; ClassName obj2 = obj1; // 调用了拷贝构造函数

函数的参数是类的对象时(非引用传递)

函数的返回值是函数体内局部对象的类的对象时 ,此时虽然发生(Named return Value优化)NRV优化,但是由于返回方式是值传递,所以会在返回值的地方调用拷贝构造函数

另:第三种情况在Linux g++ 下则不会发生拷贝构造函数,不仅如此即使返回局部对象的引用,依然不会发生拷贝构造函数

总结就是:即使发生NRV优化的情况下,Linux+ g++的环境是不管值返回方式还是引用方式返回的方式都不会发生拷贝构造函数,而Windows + VS2019在值返回的情况下发生拷贝构造函数,引用返回方式则不发生拷贝构造函数

在c++编译器发生NRV优化,如果是引用返回的形式则不会调用拷贝构造函数,如果是值传递的方式依然会发生拷贝构造函数。

在VS2019下进行下述实验:

举个例子:

class A{
public: 
    A() {}; 
    A(const A& a)  
    {
        cout << "copy constructor is called" << endl; 
    };  
    ~A() {};
};
void useClassA(A a) {}  
A getClassA()//此时会发生拷贝构造函数的调用,虽然发生NRV优化,但是依然调用拷贝构造函数  
{ 
    A a; 
    return a;
}//A& getClassA2()
//  VS2019下,此时编辑器会进行(Named return Value优化)NRV优化,不调用拷贝构造函数 ,如果是引用传递的方式返回当前函数体内生成的对象时,并不发生拷贝构造函数的调用
//{// A a;//  
return a;//}  
int main(){  
    A a1, a2,a3,a4; 
    A a2 = a1;  
    //调用拷贝构造函数,对应情况1  
    useClassA(a1);//调用拷贝构造函数,对应情况2  
    a3 = getClassA();//发生NRV优化,但是值返回,依然会有拷贝构造函数的调用 情况3  
    a4 = getClassA2(a1);//发生NRV优化,且引用返回自身,不会调用  
    return 0;
}

情况1比较好理解

情况2的实现过程是,调用函数时先根据传入的实参产生临时对象,再用拷贝构造去初始化这个临时对象,在函数中与形参对应,函数调用结束后析构临时对象

情况3在执行return时,理论的执行过程是:产生临时对象,调用拷贝构造函数把返回对象拷贝给临时对象,函数执行完先析构局部变量,再析构临时对象, 依然会调用拷贝构造函数

41、C++中有几种类型的new

在C++中,new有三种典型的使用方法:plain new,nothrow new和placement new

(1)plain new

言下之意就是普通的new,就是我们常用的new,在C++中定义如下:

Plaintext

void* operator new(std::size_t) throw(std::bad_alloc);
void operator delete(void *) throw();

因此plain new在空间分配失败的情况下,抛出异常std::bad_alloc而不是返回NULL,因此通过判断返回值是否为NULL是徒劳的,举个例子:

Plaintext

#include <iostream>;
#include <string>;
using namespace std;  
int main(){ 
    try { 
        char *p = new char[10e11]; 
        delete p; 
    } catch (const std::bad_alloc &ex) { 
        cout << ex.what() << endl; 
    } 
    return 0;
}//执行结果:bad allocation

(2)nothrow new

nothrow new在空间分配失败的情况下是不抛出异常,而是返回NULL,定义如下:

void * operator new(std::size_t,const std::nothrow_t&) throw();
void operator delete(void*) throw();

举个例子:

C++

#include <iostream>;  
#include <string>;  
using namespace std;int main(){  
    char *p = new(nothrow)  
    char[10e11];  
    if (p == NULL) { cout << "alloc failed" << endl; } delete p;  
    return 0;
}//运行结果:alloc failed

(3)placement new

这种new允许在一块已经分配成功的内存上重新构造对象或对象数组。placement new不用担心内存分配失败,因为它根本不分配内存,它做的唯一一件事情就是调用对象的构造函数。定义如下:

void* operator new(size_t,void*);

void operator delete(void*,void*);

使用placement new需要注意两点:

  1. palcement new的主要用途就是反复使用一块较大的动态分配的内存来构造不同类型的对象或者他们的数组
  2. placement new构造起来的对象数组,要显式的调用他们的析构函数来销毁(析构函数并不释放对象的内存),千万不要使用delete,这是因为placement new构造起来的对象或数组大小并不一定等于原来分配的内存大小,使用delete会造成内存泄漏或者之后释放内存时出现运行时错误。

42、C++的异常处理的方法

在程序执行过程中,由于程序员的疏忽或是系统资源紧张等因素都有可能导致异常,任何程序都无法保证绝对的稳定,常见的异常有:

数组下标越界

除法计算时除数为0

动态分配空间时空间不足

...

如果不及时对这些异常进行处理,程序多数情况下都会崩溃。

(1)try、throw和catch关键字

C++中的异常处理机制主要使用trythrowcatch三个关键字,其在程序中的用法如下:

C++

代码中,对两个数进行除法计算,其中除数为0。可以看到以上三个关键字,程序的执行流程是先执行try包裹的语句块,如果执行过程中没有异常发生,则不会进入任何catch包裹的语句块,如果发生异常,则使用throw进行异常抛出,再由catch进行捕获,throw可以抛出各种数据类型的信息,代码中使用的是数字,也可以自定义异常class。catch根据throw抛出的数据类型进行精确捕获(不会出现类型转换),如果匹配不到就直接报错,可以使用catch(...)的方式捕获任何异常(不推荐)。当然,如果catch了异常,当前函数如果不进行处理,或者已经处理了想通知上一层的调用者,可以在catch里面再throw异常。

(2)函数的异常声明列表

有时候,程序员在定义函数的时候知道函数可能发生的异常,可以在函数声明和定义时,指出所能抛出异常的列表,写法如下:

int fun() throw(int,double,A,B,C){...};

这种写法表名函数可能会抛出int,double型或者A、B、C三种类型的异常,如果throw中为空,表明不会抛出任何异常,如果没有throw则可能抛出任何异常

(3)C++标准异常类 exception

C++ 标准库中有一些类代表异常,这些类都是从 exception 类派生而来的,如下图所示

bad_typeid:使用typeid运算符,如果其操作数是一个多态类的指针,而该指针的值为 NULL,则会拋出此异常,例如:

bad_cast:在用 dynamic_cast 进行从多态基类对象(或引用)到派生类的引用的强制类型转换时,如果转换是不安全的,则会拋出此异常

bad_alloc:在用 new 运算符进行动态内存分配时,如果没有足够的内存,则会引发此异常

out_of_range:用 vector 或 string的at 成员函数根据下标访问元素时,如果下标越界,则会拋出此异常

43、static的用法和作用?(控制函数或变量的生命周期)

隐藏与持久

1.先来介绍它的第一条也是最重要的一条: 隐藏。(static函数,static变量均可)

当同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性。

静态全局变量(只在当前文件中可访问),静态局部变量(在另一个函数中声明static int a,会一直保存到主程序结束)

2.static的第二个作用是保持变量内容的持久。(static变量中的记忆功能和全局生存期)存储在静态数据区的变量会在程序刚开始运行时就完成初始化,也是唯一的一次初始化。共有两种变量存储在静态存储区:全局变量和static变量,只不过和全局变量比起来,static可以控制变量的可见范围,说到底static还是用来隐藏的。

3.static的第三个作用是默认初始化为0(static变量)

其实全局变量也具备这一属性,因为全局变量也存储在静态数据区。在静态数据区,内存中所有的字节默认值都是0x00,某些时候这一特点可以减少程序员的工作量。

4.static的第四个作用:C++中的类成员声明static

函数体内static变量的作用范围为该函数体,不同于auto变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值;

在模块内的static全局变量可以被模块内所用函数访问,但不能被模块外其它函数访问;

在模块内的static函数只可被这一模块内的其它函数调用,这个函数的使用范围被限制在声明它的模块内;

在类中的static成员变量属于整个类所拥有,对类的所有对象只有一份拷贝;

在类中的static成员函数属于整个类所拥有,这个函数不接收this指针,因而只能访问类的static成员变量。

类内:

static类对象必须要在类外进行初始化,static修饰的变量先于对象存在,所以static修饰的变量要在类外初始化;

由于static修饰的类成员属于类,不属于对象,因此static类成员函数是没有this指针的,this指针是指向本对象的指针。正因为没有this指针,所以static类成员函数不能访问非static的类成员,只能访问 static修饰的类成员;

static成员函数不能被virtual修饰,static成员不属于任何对象或实例,所以加上virtual没有任何实际意义;静态成员函数没有this指针,虚函数的实现是为每一个对象分配一个vptr指针,而vptr是通过this指针调用的,所以不能为virtual;虚函数的调用关系,this->vptr->ctable->virtual function

44、指针和const的用法

当const修饰指针时,由于const的位置不同,它的修饰对象会有所不同。

int const p2中const修饰p2的值,所以理解为p2的值不可以改变,即p2只能指向固定的一个变量地址,但可以通过_p2读写这个变量的值。顶层指针表示指针本身是一个常量

int const p1或者const int p1两种情况中const修饰p1,所以理解为_p1的值不可以改变,即不可以给*p1赋值改变p1指向变量的值,但可以通过给p赋值不同的地址改变这个指针指向。

底层指针表示指针所指向的变量是一个常量。

45、形参与实参的区别?

形参变量只有在被调用时才分配内存单元,在调用结束时, 即刻释放所分配的内存单元。因此,形参只有在函数内部有效。 函数调用结束返回主调函数后则不能再使用该形参变量。

实参可以是常量、变量、表达式、函数等, 无论实参是何种类型的量,在进行函数调用时,它们都必须具有确定的值, 以便把这些值传送给形参。 因此应预先用赋值,输入等办法使实参获得确定值,会产生一个临时变量。

实参和形参在数量上,类型上,顺序上应严格一致, 否则会发生“类型不匹配”的错误。

函数调用中发生的数据传送是单向的。 即只能把实参的值传送给形参,而不能把形参的值反向地传送给实参。 因此在函数调用过程中,形参的值发生改变,而实参中的值不会变化。

当形参和实参不是指针类型时,在该函数运行时,形参和实参是不同的变量,他们在内存中位于不同的位置,形参将实参的内容复制一份,在该函数运行结束的时候形参被释放,而实参内容不会改变。

46、值传递、指针传递、引用传递的区别和效率

值传递:有一个形参向函数所属的栈拷贝数据的过程,如果值传递的对象是类对象 或是大的结构体对象,将耗费一定的时间和空间。(传值)

指针传递:同样有一个形参向函数所属的栈拷贝数据的过程,但拷贝的数据是一个固定为4字节的地址。(传值,传递的是地址值)

引用传递:同样有上述的数据拷贝过程,但其是针对地址的,相当于为该数据所在的地址起了一个别名。(传地址)

效率上讲,指针传递和引用传递比值传递效率高。一般主张使用引用传递,代码逻辑上更加紧凑、清晰。

47、静态变量什么时候初始化

初始化只有一次,但是可以多次赋值,在主程序之前,编译器已经为其分配好了内存。

静态局部变量和全局变量一样,数据都存放在全局区域,所以在主程序之前,编译器已经为其分配好了内存,但在C和C++中静态局部变量的初始化节点又有点不太一样。在C中,初始化发生在代码执行之前,编译阶段分配好内存之后,就会进行初始化,所以我们看到在C语言中无法使用变量对静态局部变量进行初始化,在程序运行结束,变量所处的全局内存会被全部回收。

而在C++中,初始化时在执行相关代码时才会进行初始化,主要是由于C++引入对象后,要进行初始化必须执行相应构造函数和析构函数,在构造函数或析构函数中经常会需要进行某些程序中需要进行的特定操作,并非简单地分配内存。所以C++标准定为全局或静态对象是有首次用到时才会进行构造,并通过atexit()来管理。在程序结束,按照构造顺序反方向进行逐个析构。所以在C++中是可以使用变量对静态局部变量进行初始化的。

48、const关键字的作用有哪些?

阻止一个变量被改变,可以使用const关键字。在定义该const变量时,通常需要对它进行初始化,因为以后就没有机会再去改变它了;

对指针来说,可以指定指针本身为const,也可以指定指针所指的数据为const,或二者同时指定为const;

在一个函数声明中,const可以修饰形参,表明它是一个输入参数,在函数内部不能改变其值;

对于类的成员函数,若指定其为const类型,则表明其是一个常函数,不能修改类的成员变量,类的常对象只能访问类的常成员函数;

对于类的成员函数,有时候必须指定其返回值为const类型,以使得其返回值不为“左值”。

const成员函数可以访问非const对象的非const数据成员、const数据成员,也可以访问const对象内的所有数据成员;

非const成员函数可以访问非const对象的非const数据成员、const数据成员,但不可以访问const对象的任意数据成员;

一个没有明确声明为const的成员函数被看作是将要修改对象中数据成员的函数,而且编译器不允许它为一个const对象所调用。因此const对象只能调用const成员函数。

const类型变量可以通过类型转换符const_cast将const类型转换为非const类型;

const类型变量必须定义的时候进行初始化,因此也导致如果类的成员变量有const类型的变量,那么该变量必须在类的初始化列表中进行初始化;

对于函数值传递的情况,因为参数传递是通过复制实参创建一个临时变量传递进函数的,函数内只能改变临时变量,但无法改变实参。则这个时候无论加不加const对实参不会产生任何影响。但是在引用或指针传递函数调用中,因为传进去的是一个引用或指针,这样函数内部可以改变引用或指针所指向的变量,这时const 才是实实在在地保护了实参所指向的变量。因为在编译阶段编译器对调用函数的选择是根据实参进行的,所以,只有引用传递和指针传递可以用是否加const来重载。一个拥有顶层const的形参无法和另一个没有顶层const的形参区分开来。

49、什么是类的继承?

类与类之间的关系

has-A包含关系,用以描述一个类由多个部件类构成,实现has-A关系用类的成员属性表示,即一个类的成员属性是另一个已经定义好的类;

use-A,一个类使用另一个类,通过类之间的成员函数相互联系,定义友元或者通过传递参数的方式来实现;

is-A,继承关系,关系具有传递性;

2.继承的相关概念

所谓的继承就是一个类继承了另一个类的属性和方法,这个新的类包含了上一个类的属性和方法,被称为子类或者派生类,被继承的类称为父类或者基类;

3.继承的特点

子类拥有父类的所有属性和方法,子类可以拥有父类没有的属性和方法,子类对象可以当做父类对象使用;

4.继承中的访问控制

public、protected、private

5.继承中的构造和析构函数

6.继承中的兼容性原则

51、深拷贝与浅拷可以描述一下吗?

浅复制 :只是拷贝了基本类型的数据,而引用类型数据,复制后也是会发生引用,我们把这种拷贝叫做“(浅复制)浅拷贝”,换句话说,浅复制仅仅是指向被复制的内存地址,如果原地址中对象被改变了,那么浅复制出来的对象也会相应改变。浅拷贝可能出现野指针问题

深复制 :在计算机中开辟了一块新的内存地址用于存放复制的对象。

在某些状况下,类内成员变量需要动态开辟堆内存,如果实行位拷贝,也就是把对象里的值完全复制给另一个对象,如A=B。这时,如果B中有一个成员变量指针已经申请了内存,那A中的那个成员变量也指向同一块内存。这就出现了问题:当B把内存释放了(如:析构),这时A内的指针就是野指针了,出现运行错误。

52、new和malloc的区别?

1、 new/delete是C++关键字,需要编译器支持。malloc/free是库函数,需要头文件支持;

2、 使用new操作符申请内存分配时无须指定内存块的大小,编译器会根据类型信息自行计算。而malloc则需要显式地指出所需内存的尺寸。

3、 new操作符内存分配成功时,返回的是对象类型的指针,类型严格与对象匹配,无须进行类型转换,故new是符合类型安全性的操作符。而malloc内存分配成功则是返回void ,需要通过强制类型转换将void指针转换成我们需要的类型。

4、 new内存分配失败时,比如整个内存枯竭,会抛出bac_alloc异常malloc分配内存失败时返回NULL。

5、 new会先调用operator new函数,申请足够的内存(通常底层使用malloc实现)。然后调用类型的构造函数,初始化成员变量,最后返回自定义类型指针。delete先调用析构函数,然后调用operator delete函数释放内存(通常底层使用free实现)。malloc/free是库函数,只能动态的申请和释放内存,无法强制要求其做自定义类型对象构造和析构工作。

53、delete p、delete [] p、allocator都有什么作用?

1、 动态数组管理new一个数组时,[]中必须是一个整数,但是不一定是常量整数,普通数组必须是一个常量整数;

2、 new动态数组返回的并不是数组类型,而是一个元素类型的指针;

3、 delete[]时,数组中的元素按逆序的顺序进行销毁;

4、 new在内存分配上面有一些局限性,new的机制是将内存分配和对象构造组合在一起,同样的,delete也是将对象析构和内存释放组合在一起的。allocator将这两部分分开进行,allocator申请一部分内存,不进行初始化对象,只有当需要的时候才进行初始化操作。

54、new和delete的实现原理, delete是如何知道释放内存的大小的额?

1、 new简单类型直接调用operator new分配内存;

而对于复杂结构,先调用operator new分配内存,然后在分配的内存上调用构造函数;

对于简单类型,new[]计算好大小后调用operator new;

对于复杂数据结构,new[]先调用operator new[]分配内存,然后在p的前四个字节写入数组大小n,然后调用n次构造函数,针对复杂类型,new[]会额外存储数组大小;

① new表达式调用一个名为operator new(operator new[])函数,分配一块足够大的、原始的、未命名的内存空间;

② 编译器运行相应的构造函数以构造这些对象,并为其传入初始值;

③ 对象被分配了空间并构造完成,返回一个指向该对象的指针。

2、 delete简单数据类型默认只是调用free函数;复杂数据类型先调用析构函数再调用operator delete;针对简单类型,delete和delete[]等同。假设指针p指向new[]分配的内存。因为要4字节存储数组大小,实际分配的内存地址为[p-4],系统记录的也是这个地址。delete[]实际释放的就是p-4指向的内存。而delete会直接释放p指向的内存,这个内存根本没有被系统记录,所以会崩溃。

3、 需要在 new [] 一个对象数组时,需要保存数组的维度,C++ 的做法是在分配数组空间时多分配了 4 个字节的大小,专门保存数组的大小,在 delete [] 时就可以取出这个保存的数,就知道了需要调用析构函数多少次了。

55、malloc申请的存储空间能用delete释放吗

不能,malloc /free主要为了兼容C,new和delete 完全可以取代malloc /free的。

malloc /free的操作对象都是必须明确大小的,而且不能用在动态类上。

new 和delete会自动进行类型检查和大小,malloc/free不能执行构造函数与析构函数,所以动态对象它是不行的。

当然从理论上说使用malloc申请的内存是可以通过delete释放的。不过一般不这样写的。而且也不能保证每个C++的运行时都能正常。

56、malloc与free的实现原理?

1、 在标准C库中,提供了malloc/free函数分配释放内存,这两个函数底层是由brk、mmap、,munmap这些系统调用实现的;

2、 brk是将数据段(.data)的最高地址指针_edata往高地址推,mmap是在进程的虚拟地址空间中(堆和栈中间,称为文件映射区域的地方)找一块空闲的虚拟内存。这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系;

3、 malloc小于128k的内存,使用brk分配内存,将_edata往高地址推;malloc大于128k的内存,使用mmap分配内存,在堆和栈之间找一块空闲内存分配;brk分配的内存需要等到高地址内存释放以后才能释放,而mmap分配的内存可以单独释放。当最高地址空间的空闲内存超过128K(可由M_TRIM_THRESHOLD选项调节)时,执行内存紧缩操作(trim)。在上一个步骤free的时候,发现最高地址空闲内存超过128K,于是内存紧缩。

4、 malloc是从堆里面申请内存,也就是说函数返回的指针是指向堆里面的一块内存。操作系统中有一个记录空闲内存地址的链表。当操作系统收到程序的申请时,就会遍历该链表,然后就寻找第一个空间大于所申请空间的堆结点,然后就将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。

57、malloc、realloc、calloc的区别

malloc函数

void* malloc(unsigned int num_size);
int *p = malloc(20*sizeof(int));申请20个int类型的空间;

calloc函数

void* calloc(size_t n,size_t size);
int *p = calloc(20, sizeof(int));

省去了人为空间计算;malloc申请的空间的值是随机初始化的,calloc申请的空间的值是初始化为0的;

realloc函数

void realloc(void *p, size_t new_size);

给动态分配的空间分配额外的空间,用于扩充容量。

评论区 0